Abstract

Mobile-edge computing (MEC) has aroused significant attention for its performance to accelerate application's operation and enrich user's experience. With the increasing development of green computing, energy harvesting (EH) is considered as an available technology to capture energy from circumambient environment to supply extra energy for mobile devices. In this paper, we propose an online dynamic tasks assignment scheduling to investigate the tradeoff between energy consumption and execution delay for an MEC system with EH capability. We formulate it into an average weighted sum of energy consumption and execution delay minimization problem of mobile device with the stability of buffer queues and battery level as constraints. Based on the Lyapunov optimization method, we obtain the optimal scheduling about the CPU-cycle frequencies of mobile device and transmit power for data transmission. Besides, the dynamic online tasks offloading strategy is developed to modify the data backlogs of queues. The performance analysis shows the stability of the battery energy level and the tradeoff between energy consumption and execution delay. Moreover, the MEC system with EH devices and task buffers implements the high energy efficient and low latency communications. The performance of the proposed online algorithm is validated with extensive trace-driven simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.