Abstract
Sleep and feeding are vital homeostatic behaviors, and disruptions in either can result in substantial metabolic consequences. Distinct neuronal manipulations in Drosophila can dissociate sleep loss from subsequent homeostatic rebound, offering an optimal platform to examine the precise interplay between these fundamental behaviors. Here, we investigate concomitant changes in sleep and food intake in individual animals, as well as respiratory metabolic expenditure, that accompany behavioral and genetic manipulations that induce sleep loss in Drosophila melanogaster. We find that sleep disruptions resulting in energy deficit through increased metabolic expenditure and manifested as increased food intake were consistently followed by rebound sleep. In contrast, "soft" sleep loss, which does not induce rebound sleep, is not accompanied by increased metabolism and food intake. Our results demonstrate that homeostatic sleep rebound is linked to energy deficit accrued during sleep loss. Collectively, these findings support the notion that sleep functions to conserve energy and highlight the need to examine the effects of metabolic therapeutics on sleep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.