Abstract

Mayer’s energy decomposition method was applied inthe study of the relative stability of cis and trans isomers of 1,2-disubstituted ethylenes, XHC CHX (X = F, Cl, Br) and 2-butene. The trans to cis isomerization energy for each system was determined at the Hartree–Fock level, with several basis sets, and then divided into monoatomic and diatomic energy contributions. The results point to a different energy distribution for the dihaloethylenes, known for exhibiting a cis isomer that is more stable than the trans one, a behavior that is known as the cis effect, when compared to 2-butene. The main stabilizing effects of the cis isomer in the dihaloethylenes, at this level of theory, are energy terms associated with the interaction of the X substituents with the C atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.