Abstract
Increasing global energy consumption has created an urgent need to address climate change and consequently, the need for sustainable and renewable energy has increased. Simultaneously, the pervasive presence of crude oil hydrocarbons in the ecosystem, stemming from exploration and extraction activities, underscores the urgency for developing effective and environment-friendly remediation technologies. Hence, here we describe use of non-edible second-generation energy crops for rhizoremediation of oil contaminated soil, to yield plant biomass for bioenergy and carbon sequestration. This could address the restoration of petroleum hydrocarbon contaminated soil, along with waste management for biofuel production. This strategy could also save the agricultural land that is under threat as a consequence of crude oil contamination. The strategies for enhanced rhizoremediation with bioenergy crops have been elaborated, including soil, and microbiome engineering. Furthermore, the article delves into recent technological advancements aimed at enhancing the efficiency of biofuel production with bioenergy crops, employing methodologies such as synthetic biology, systems biology, and metabolic engineering. Despite the promising aspects of this approach, challenges in biofuel production using bioenergy crops are acknowledged, including issues such as N2O emissions, biodiversity loss, and water quality management. The article not only outlines these challenges but also proposes remedial strategies to address them. Through this comprehensive discussion, valuable insights are provided on the potential of petroleum hydrocarbon-contaminated soils for biomass production within the framework of achieving sustainable bioenergy generation. This approach has potential to mitigate CO2 emissions, remediate polluted lands, and significantly contribute to the global effort to combat climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.