Abstract

This report describes a mathematical model for fatigue strength of cellulosic materials under sinusoidal loading. The model is based on the Reiner-Weissenberg thermodynamic theory of strength in conjunction with a nonlinear Eyring’s three-element model. This theory states that failure depends on a maximum value of the intrinsic free energy that can be stored elastically in a volume element of the material. The three-element mechanical model, which consists of a linear spring in series with a parallel array of another linear spring and an Eyring dashpot, provides a good description of rheological material properties. The strength model system was able to predict rupture occurrence of polymers and wood structural members under constant and ramp loading with satisfactory results. For sinusoidal loading, the present study shows that the strength model system can predict time at fracture as a function of applied mean stress, amplitude of cyclic stress, and stress frequency. Numerical examples with model parameters evaluated for small Douglas-fir beams are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.