Abstract
Quantum circuits are difficult to simulate, and their automated optimisation is complex as well. Significant optimisations have been achieved manually (pen and paper) and not by software. This is the first in-depth study on the cost of compiling and optimising large-scale quantum circuits with state-of-the-art quantum software. We propose a hierarchy of cost metrics covering the quantum software stack and use energy as the long-term cost of operating hardware. We are going to quantify optimisation costs by estimating the energy consumed by a CPU doing the quantum circuit optimisation. We use QUANTIFY, a tool based on Google Cirq, to optimise bucket brigade QRAM and multiplication circuits having between 32 and 8,192 qubits. Although our classical optimisation methods have polynomial complexity, we observe that their energy cost grows extremely fast with the number of qubits. We profile the methods and software and provide evidence that there are high constant costs associated to the operations performed during optimisation. The costs are the result of dynamically typed programming languages and the generic data structures used in the background. We conclude that state-of-the-art quantum software frameworks have to massively improve their scalability to be practical for large circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.