Abstract

BackgroundPrevious research has shown that use of a dynamic-response prosthetic foot (DRF) that incorporates a small passive hydraulic ankle device (hyA-F), provides certain biomechanical benefits over using a DRF that has no ankle mechanism (rigA-F). This study investigated whether use of a hyA-F in unilateral trans-tibial amputees (UTA) additionally provides metabolic energy expenditure savings and increases the symmetry in walking kinematics, compared to rigA-F.MethodsNine active UTA completed treadmill walking trials at zero gradient (at 0.8, 1.0, 1.2, 1.4, and 1.6 of customary walking speed) and for customary walking speed only, at two angles of decline (5° and 10°). The metabolic cost of locomotion was determined using respirometry. To gain insights into the source of any metabolic savings, 3D motion capture was used to determine segment kinematics, allowing body centre of mass dynamics (BCoM), differences in inter-limb symmetry and potential for energy recovery through pendulum-like motion to be quantified for each foot type.ResultsDuring both level and decline walking, use of a hyA-F compared to rigA-F significantly reduced the total mechanical work and increased the interchange between the mechanical energies of the BCoM (recovery index), leading to a significant reduction in the metabolic energy cost of locomotion, and hence an associated increase in locomotor efficiency (p < 0.001). It also increased inter-limb symmetry (medio-lateral and progression axes, particularly when walking on a 10° decline), highlighting the improvements in gait were related to a lessening of the kinematic compensations evident when using the rigA-F.ConclusionsFindings suggest that use of a DRF that incorporates a small passive hydraulic ankle device will deliver improvements in metabolic energy expenditure and kinematics and thus should provide clinically meaningful benefits to UTAs’ everyday locomotion, particularly for those who are able to walk at a range of speeds and over different terrains.

Highlights

  • Previous research has shown that use of a dynamic-response prosthetic foot (DRF) that incorporates a small passive hydraulic ankle device, provides certain biomechanical benefits over using a DRF that has no ankle mechanism

  • Results indicate that use of a DRF that has an ankle mechanism providing a small range of hydraulically controlled passive articulation at the point of attachment should significantly reduce the energy expenditure per metre travelled in comparison to using the same DRF

  • We have shown that compared to using a DRF with rigid attachment, use of a hyA-F leads to bodyweight being transferred onto the prosthetic limb in a smoother less faltering manner with accompanying smaller reduction in body centre of mass dynamics (BCoM) forward velocity [20, 41], and to a reduction in compensatory intact-limb stance phase joint work per metre travelled [1]

Read more

Summary

Introduction

Previous research has shown that use of a dynamic-response prosthetic foot (DRF) that incorporates a small passive hydraulic ankle device (hyA-F), provides certain biomechanical benefits over using a DRF that has no ankle mechanism (rigA-F). The most significant prosthetic development has been the introduction of dynamic response feet (DRF): sometimes referred to as ‘energy storing and return’ feet Such feet incorporate carbon-fibre heel and forefoot keels that elastically deform during loading and subsequently recoil (return energy) to aid forwards progression. Use of such feet has been shown to increase the amount of late stance mechanical power return at the distal end of the prosthetic shank (‘ankle’) [2, 5, 14] and as a result the metabolic cost of locomotion is reduced compared to when using traditional semi-rigid type feet [15, 16]; though such reductions have not always been found [5, 8, 11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call