Abstract

Signals received by piezoelectric transducers (PZT) network can be influenced by many factors. Apart from environmental conditions, whose variability should be compensated, significant difference in a signal can be also caused by relative geometry changes of a designed sensors node, e.g. the damage localization and its orientation with respect to sensors location in the node. In the adopted approach a set of damage indices (DIs), carrying marginal signal information content and correlated with the total energy received by a given sensor are proposed. These are sensitive to the two main modes of guided wave interaction with a fatigue crack, i.e. its transmission and reflection from a damage. Detailed description of DIs detection capabilities are delivered in the paper. Two dimensional reduction techniques: Principal Component Analysis and Fishers Linear Discriminant are compared. The results of the data collected from specimen fatigue test are used to compare several classification models based on the emerged effective damage indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.