Abstract

One of the deterrents to the commercial adoption of controlled-environment agriculture (CEA) on a broad scale is the significant energy cost for lighting and thermal environmental control. Advances in energy conversion technologies, such as internal combustion engines (ICs), microturbines and fuel cells, offer the potential for combined heat and power (CHP) systems, which can be matched with the needs of CEA to reduce fossil-based fuels consumption. A principal concept delineated is that an integrated entrepreneurial approach to create business and community partnerships can enhance the value of energy produced (both electrical and heat). Energy production data from a commercial dairy farm is contrasted with energy use data from two greenhouse operations with varying energy-input requirements. Biogass produced from a 500-cow dairy combined with a 250-kW fuel cell could meet nearly all of the energy needs of both the dairy and an energy-intensive 740-m2 CEA greenhouse lettuce facility. The data suggest CEA greenhouses and other closely compatible enterprises can be developed to significantly alter agriculture, as we have known it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.