Abstract

This study investigates energy-conversion properties of the electrostrictive polymer, poly(vinylidene fluoride-co-hexafluoropropylene), P(VDF-HFP), filled with graphene nanosheets (GNPs). The composites (i.e., P(VDF-HFP) and GNPs) were fabricated by using the solution casting method. The dielectric constant of these electrostrictive materials was measured to observe the energy conversion property with different frequencies using an LCR meter. Their mechanical properties were measured using a photonic sensor with varying various input vibrations and electric fields to calculate their electrostrictive coefficients. These characterized results revealed that dielectric constants and electrostrictive coefficients were significantly increased when GNPs fillers were filled higher. For the electrical property, the generating current, which was measured across these polymer films, increased proportionally with respect to the adding GNPs. In this obtained result, the main finding of P(VDF-HFP)/GNPs composites is a promising electrostrictive material for applications of electromechanical energy conversions in many smart-material systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call