Abstract

The generation of terahertz (THz) pulses based on optical rectification effects in GaAs has become more and more attractive and practical due to advances in high power ultrashort pulse fiber lasers. Normally coherence length is a parameter introduced for judging how the phases match by comparing the group velocity of optical pulses with the phase velocity of one of frequency components, like, for example, a component at 2 THz, of THz pulses. It is shown in this paper that the coherence length can not characterize the THz pulse generating process well because it can not count the contribution of all components in the spectrum band of the THz pulses. An energy conversion efficiency calculation model is proposed in this paper by integrating the energy of all THz components generated in the optical rectification process in a planar waveguide device. Based on the calculation model, the evolution of a THz pulse along the longitudinal direction of the waveguide is simulated and the results are used for design of the optimal waveguide structure for which the highest energy conversion efficiency could be reached to 1.5 × 10 -3 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.