Abstract

Nervous system has distinct anisotropy and some intrinsic biophysical properties enable neurons present various firing modes in neural activities. In presence of realistic electromagnetic fields, non-uniform radiation activates these neurons with energy diversity. By using a feasible model, energy function is obtained to predict the growth of synaptic connections of these neurons. Distribution of average value of the Hamilton energy function vs. intensity of noisy disturbance can predict the occurrence of coherence resonance, which the neural activities show high regularity by applying noisy disturbance with moderate intensity. From physical viewpoint, the average energy value has similar role average power for the neuron. Non-uniform spatial disturbance is applied and energy is injected into the neural network, statistical synchronization factor is calculated to predict the network synchronization stability and wave propagation. The intensity for field coupling is adaptively controlled by energy diversity between adjacent neurons. Local energy balance will terminate further growth of the coupling intensity; otherwise, heterogeneity is formed in the network due to energy diversity. Furthermore, memristive channel current is introduced into the neuron model for perceiving the effect of electromagnetic induction and radiation, and a memristive neuron is obtained. The circuit implement of memristive circuit depends on the connection to a magnetic flux-controlled memristor into the mentioned neural circuit in an additive branch circuit. The connection and activation of this memristive neural network are controlled under external spatial electromagnetic radiation by capturing enough field energy. Continuous energy collection and exchange generate energy diversity and synaptic connection is created to regulate the synchronous firing patterns and energy balance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call