Abstract

Abstract We revisit a unified methodology for the iterative solution of nonlinear equations in Hilbert spaces. Our key observation is that the general approach from [P. Heid and T. P. Wihler, Adaptive iterative linearization Galerkin methods for nonlinear problems, Math. Comp. 89 2020, 326, 2707–2734; P. Heid and T. P. Wihler, On the convergence of adaptive iterative linearized Galerkin methods, Calcolo 57 2020, Paper No. 24] satisfies an energy contraction property in the context of (abstract) strongly monotone problems. This property, in turn, is the crucial ingredient in the recent convergence analysis in [G. Gantner, A. Haberl, D. Praetorius and S. Schimanko, Rate optimality of adaptive finite element methods with respect to the overall computational costs, preprint 2020]. In particular, we deduce that adaptive iterative linearized finite element methods (AILFEMs) lead to full linear convergence with optimal algebraic rates with respect to the degrees of freedom as well as the total computational time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call