Abstract

Grain sorghum [Sorghum bicolor (L.) Moench, a C4 crop] and soybean [Glycine max (L.) Merr. cv. Stonewall, a C3 crop] plants were grown in ambient (c. 360μl 1-1 ) and twice-ambient (c. 720 μl 1-1 ) CO2 levels in open-top chambers in soil without root constriction. Plant dry mass, energy content, composition and construction cost (i.e. amount of carbohydrate required to synthesize a unit of plant dry mass) were assessed at the end of the growing season. Elevated CO2 (a) increased phytomass accumulation (kg per plant) in both species, (b) had little affect on energy concentration (MJ kg-1 plant) but caused large increases in the amount of plant energy per ground area (MJ m-2 ground), and (c) did not alter specific growth cost (kg carbohydrate kg-1 plant growth) but greatly increased growth cost per ground area (kg carbohydrate m-2 ground) because growth was enhanced. For soybean, twice-ambient CO2 resulted in a 50 % increase in the amount of nitrogen and energy in grain (seed plus pod) per ground area. This response to elevated CO2 has important implications for agricultural productivity during the next century because the rate of human population growth is exceeding the rate of increase of land used for agriculture so that future food demands can only be met by greater production per ground area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.