Abstract

New energy integration is thought to be one of the most potential solutions to support the power system with a sustainable energy infrastructure. However, new energy is an uncertain power generation resource, and the electricity generated by it has the characteristics of randomness, intermittency and reverse peak regulation. Its large-scale integration into the power grid makes the operation and reliability scheduling of the power system more challenging. It was important to build a wireless sensing and monitoring network to monitor the power and change trend of the new energy field (station) in real time. The energy consumption of wireless sensing monitoring network is an important factor to improve the reliability of new energy scheduling. Based on the energy consumption of the wireless sensing monitoring network built by the new energy scheduling, the compression sensing technology was integrated and the network routing protocol (I-LEACH protocol) was optimized. The sampling data was transmitted by the cluster head node at the compression rate of 0.6, the improved OMP (Orthogonal Matching Pursuit) algorithm was reconstructed to achieve reliable data transmission, and the network energy consumption was further reduced. Compared with the I-LEACH routing protocol network, the experiments show that the network residual energy of the proposed method increased by 22% and the life cycle increased by about 30%. This method is helpful to improve the reliability of new energy power dispatching system and it can provide reference for realizing the reliability scheduling of new energy power system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.