Abstract

In recent years, as cloud data center has grown constantly in size and quantity, the energy consumption of cloud data center has increased dramatically. Therefore, it is of great significance to study the energy-saving issues of cloud data centers in depth. Therefore, this paper analyzes the architecture of energy consumption of IT system in cloud data centers and proposes a new framework for collecting energy consumption. Based on this framework, the factors affecting energy consumption are studied, and various parameters closely related to energy consumption are selected. Finally, the RBF neural network is used to model and predict the energy consumption of the cloud data centers, which is aim to prove the accuracy of the framework for collecting energy consumption and influencing factors. The experimental results show that these parameters under the framework for collecting energy consumption have better accuracy and adaptability to the prediction of energy consumption in cloud data centers than the previous model of energy consumption prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.