Desalination | VOL. 510

Energy consumption of an electrodialyzer desalinating aqueous polymer solutions

Publication Date Aug 1, 2021


Abstract When performing electrodialysis (ED) to desalinate a stream, both the energy for desalination and the energy for pumping contribute to the total energy consumption, although under typical working conditions (e.g., brackish water desalination) the latter is usually negligible. However, the energy penalty might increase when desalinating viscous mixtures (i.e., viscosity of 2–20 cP). In this work, we experimentally investigate the desalination performance of an ED-unit operating with highly viscous water-polymer mixtures. The contribution of desalination and pumping energy to the total energy consumption was measured while varying diverse parameters, i.e., salinity and viscosity of the feed, and geometry and thickness of the spacer. It was found that the type of spacer did not significantly influence the energy required for desalination. The pumping energy was higher than predicted, though in most cases minimal compared to the energy for desalination. Only when using thin spacers (300 μm) and/or highly viscous feeds (12 cP), the pumping energy accounted for 50% of the total energy for low salinity feeds. Therefore, the main contributor to the energy consumption of viscous solutions is the desalination energy, provided that large spacer thicknesses (at least 450 μm) and adequate operating conditions are utilized to limit pumping energy losses.


Desalination Energy Pumping Energy Large Spacer Thicknesses Brackish Water Desalination Typical Working Conditions Viscous Mixtures Thin Spacers Type Of Spacer Energy Consumption Energy Penalty

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.