Abstract
The ineffectiveness of signature-based malware detection systems prevents the detection of malware, even objects of trivial obfuscation techniques, makes mobile devices vulnerable. In this paper a dynamic technique to detect malware on Android platform is proposed. We exploit a set of energy related features i.e., feature which can be symptomatic of abnormal battery consumption. We built different models exploiting four different supervised machine learning classification algorithms, obtaining for all the evaluated models an accuracy greater than 0.91.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.