Materials Science Forum | VOL. 868
Read
Energy Consumption in Batch-Mode Capacitive Deionization
Abstract
Capacitive deionization (CDI) is a water desalination technique in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a small voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. Therefore, one of the advanced merits of CDI is the low driven energy by compared to other desalination technologies. Inspired this, we have performed the calculation on energy consumption of activated carbon based CDI in different operation conditions. The results show that the energy consumptions are significantly related to cell voltage as well as solution concentration. Furthermore, the round trip efficiency as a vital indication in terms of energy consumption have been introduced and discussed as well.
Concepts
Capacitive Deionization Water Desalination Technique Vital Indication Desalination Technologies Energy Consumption Round Trip Efficiency Salt Ions Porous Electrodes Spacer Channel Brackish Water
Introducing Weekly Round-ups!Beta
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023
Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.