Abstract

Recent years have seen an increasing interest in developing robust, accurate and possibly fast forecasting methods for both energy production and consumption. Traditional approaches based on linear architectures are not able to fully model the relationships between variables, particularly when dealing with many features. We propose a Gradient-Boosting–Machine-based framework to forecast the demand of mixed customers of an energy dispatching company, aggregated according to their location within the seven Italian electricity market zones. The main challenge is to provide precise one-day-ahead predictions, despite the most recent data being two months old. This requires exogenous regressors, e.g., as historical features of part of the customers and air temperature, to be incorporated in the scheme and tailored to the specific case. Numerical simulations are conducted, resulting in a MAPE of 5–15% according to the market zone. The Gradient Boosting performs significantly better when compared to classical statistical models for time series, such as ARMA, unable to capture holidays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.