Abstract
A growing number of organizations are hosting their software applications in distributed data centers (DCs) in the cloud, for faster response time and higher energy efficiency. The dramatic increase of user tasks, however, poses a significant challenge on DC providers to retain users’ expectations on both aspects. To tackle this challenge, this work first formulates the problem into a constrained biobjective optimization problem. A biobjective algorithm, named simulated-annealing-based adaptive differential evolution (SADE), is presented to simultaneously reduce both the response time of tasks and energy cost. Meanwhile, a method of minimal Manhattan distance is adopted to search for a final knee, for achieving a good balance between response time minimization and energy cost reduction. Experimental results on real-life datasets, i.e., the electricity prices and tasks collected from a Google cluster trace, have proved that SADE yields less task response time and lower energy cost compared with state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.