Abstract

The analysis of experimental data, chemical reaction mechanisms, and kinetic modeling data is used to determine the power input and pulsed-corona-discharge reactor configuration that minimizes energy consumption for converting N2O in nitrogen and N2O in argon, which are model binaries reminiscent of more complex NOx in flue gas systems. Specifically, it is found that in-series reactors are much more energy efficient than a single reactor and more energy efficient than parallel reactors. For example, 12 reactors in series are needed to remove 90% of N2O if its initial concentration in nitrogen is about 200 ppm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.