Journal of Sustainable Metallurgy | VOL. 6

Energy Consumption and Greenhouse Gas Emissions During Ferromolybdenum Production

Publication Date Jan 6, 2020


Molybdenum is mainly used as an alloy material in the iron and steel industry and typically in the form of ferromolybdenum (FeMo). The current study aims to evaluate the energy consumption and greenhouse gas emissions (GHG) of four ferromolybdenum production cases using inventory inputs from a process model based on mass and energy conservations. The total energy required for producing 1\xa0tonne of FeMo can vary between 29.1\xa0GJ/t FeMo and 188.6\xa0GJ/t FeMo. Furthermore, the corresponding GHG emissions differ from 3.16 tCO2-eq/t FeMo to 14.79 tCO2-eq/t FeMo. The main variances are from the mining and beneficiation stages. The differences in these stages come from the beneficiation degree (ore grade) and the mine type (i.e., co-product from copper mining). Furthermore, the mine type has a larger impact on the total energy consumption and GHG emissions than the beneficiation degree. More specifically, FeMo produced as co-product from copper mining has a lower environmental impact measured as the energy consumption and GHG emission among all the four cases. The inventory, consumed energy or associated GHG emission is independent on the initial ore grade and mine type in the downstream production stages such as roasting and smelting. Also, transport has the least impact on the energy consumption and GHG emission among all production stages.


GHG Emission Energy Consumption Copper Mining Greenhouse Gas Emissions Ore Grade Total Energy Consumption Steel Industry Alloy Material Total GHG Emissions Production Stages

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.