Abstract

Internet of things (IoT) has been employed in recent years across multiple disciplines in the Fifth Generation (5G) era. The low power consumption of the devices allows long battery lifetimes with increasing wireless coverage ranges. This paper presents a comprehensive power consumption model for battery lifetime estimation in narrowband IoT (NB-IoT), which is based on the user equipment (UE) state diagram and considers the extended discontinuous reception (eDRX) and power saving mode (PSM) mechanisms. This model has been used to simulate the effect of varying NB-IoT link parameters, covering a range of values defined in the specification, corresponding to a wide range of applications. Indeed, this study focuses on mathematical analysis of UE power consumption, mainly for NB-IoT communication applications. Repetitions, as defined in the standard, have also been considered in the analysis. Extensive simulations have been carried out to show the power of the proposed model, which provides accurate results for a wide variety of network parameters and let the network designer to select the most appropriated setup. They also show that the value of link parameters must be carefully selected to achieve a battery lifetime of more than a decade with a standard battery of 5 Wh capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call