Abstract
This paper presents a new Coverage Path Planning (CPP) method for an aerial imaging mission with multiple Unmanned Aerial Vehicles (UAVs). In order to solve a CPP problem with multicopters, a typical mission profile can be defined with five mission segments: takeoff, cruise, hovering, turning, and landing. The traditional arc-based optimization approaches for the CPP problem cannot accurately estimate actual energy consumption to complete a given mission because they cannot account for turning phases in their model, which may cause non-feasible routes. To solve the limitation of the traditional approaches, this paper introduces a new route-based optimization model with column generation that can trace the amount of energy required for all different mission phases. This paper executes numerical simulations to demonstrate the effectiveness of the proposed method for both a single UAV and multiple UAV scenarios for CPP problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.