Abstract

New relativistic energy-consistent pseudopotentials have been generated for the 5d transition metals Hf-Pt. The adjustment was done in numerical two-component multiconfiguration Hartree-Fock calculations, using atomic valence-energy spectra from four-component multiconfiguration Dirac-Hartree-Fock calculations as reference data. The resulting two-component pseudopotentials replace the [Kr]4d(10)4f(14) cores of the 5d transition metals and can easily be split into a scalar-relativistic and a spin-orbit part. They reproduce the all-electron reference energy data with deviations of approximately 0.01 eV for configurational averages and approximately 0.05 eV for individual relativistic states. Full series of correlation consistent basis sets from double to quintuple-zeta have also been developed in this work for use with the new pseudopotentials. In addition, all-electron triple-zeta quality correlation consistent basis sets are also reported in order to provide calibration for the pseudopotential treatment. The accuracy of both the pseudopotentials and basis sets are assessed in extensive coupled cluster benchmark calculations of atomic ionization potentials, electron affinities, and selected excitation energies of all the 5d metal atoms, including the effects of spin-orbit coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call