Abstract

A new, modified molecular structural mechanics model for the determination of the elastic properties of carbon nanotubes is presented. It is designed specifically to overcome drawbacks in existing molecular structural mechanics models, which are not consistent with their underlying chemical force fields in terms of energy. As a result, modifications are motivated, developed and implemented in order to create a new, energy consistent molecular structural mechanics model. Hence, the new model leads to a better prediction of the material parameters for single wall carbon nanotubes, while the simple applicability of the approach is maintained. The results calculated for the elastic constants (Young's modulus, Poisson ratio) of armchair and zig-zag CNTs are given and discussed. Both elastic constants were found to be dependent on the chirality as well as on the carbon nanotube diameter. An asymptotic value of approximately 800 GPa was obtained for the Young's modulus and a value of approximately 0.28 for the Poisson ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.