Abstract
Low-barrier hydrogen bonds have recently been proposed as a major factor in enzyme catalysis. Here we evaluate the feasibility of transition state (TS) stabilization by low-barrier hydrogen bonds in enzymes. Our analysis focuses on the facts that (i) a low-barrier hydrogen bond is less stable than a regular hydrogen bond in water, (ii) TSs are more stable in the enzyme active sites than in water, and (iii) a nonpolar active site would destabilize the TS relative to its energy in water. Combining these points and other experimental and theoretical facts in a physically consistent frame-work shows that a low-barrier hydrogen bond cannot stabilize the TS more than an ordinary hydrogen bond. The reason for the large catalytic effect of active site hydrogen bonds is that their formation entails a lower reorganization energy than their solution counterparts, due to the preorganized enzyme environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.