Abstract

This paper discusses energy-conserving time-discretizations for finite element particle-in-cell discretizations of the Vlasov–Maxwell system. A geometric spatially discrete system can be obtained using a standard particle-in-cell discretization of the particle distribution and compatible finite element spaces for the fields to discretize the Poisson bracket of the Vlasov–Maxwell model (see Kraus et al. (2017) [1]). In this paper, we derive energy-conserving time-discretizations based on the discrete gradient method applied to an antisymmetric splitting of the Poisson matrix. Firstly, we propose a semi-implicit method based on a splitting that yields constant Poisson matrices in each substep. Moreover, we devise an alternative discrete gradient that yields a time discretization that can additionally conserve Gauss' law. Finally, we explain how substepping for fast species dynamics can be incorporated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call