Abstract

An energy conserving finite-element formulation for the dynamic analysis of geometrically non-linear beam-like structures undergoing large overall motions has been developed. The formulation uses classical displacement-based planar beam finite elements described in an inertial frame. It takes into account finite axial, bending and shear strains. A theoretically consistent approach is used to derive a novel and simple energy conserving scheme, using the unconventional incremental strain update rather than the standard strong form. Numerical examples demonstrate perfect energy and momenta conservation, stability and robustness of the scheme, and good convergence properties in terms of both the Newton–Raphson method and time step size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.