Abstract
The energy conservation law and the flow reversal theorem are valid for underwater acoustic fields. In media at rest the theorem transforms into well-known reciprocity principle. The presented parabolic equation (PE) model strictly preserves these important physical properties in the numerical solution. The new PE is obtained from the one-way wave equation by Godin12 via Pade approximation of the square root operator and generalized to the case of moving media. The PE is range-dependent and explicitly includes range derivatives of the medium parameters. Implicit finite difference scheme solves the PE written in terms of energy flux. Such formalism inherently provides simple and exact energy-conserving boundary condition at vertical interfaces. The finite-difference operators, the discreet boundary conditions, and the self-starter are derived by discretization of the differential PE. Discreet energy conservation and flow reversal theorem are rigorously proved as mathematical properties of the finite-difference scheme and confirmed by numerical modeling. Numerical solution is shown to be reciprocal with accuracy of 10–12 decimal digits, which is the accuracy of round-off errors. Energy conservation and wide-angle capabilities of the model are illustrated by comparison with two-way normal mode solutions including the ASA benchmark wedge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.