Abstract

When grown in carbon source-limited chemostat cultures with lactate or glucose as the carbon and energy source and xylose as an additional source of reducing equivalents. Pseudomonas putida NCTC 10936 oxidized xylose to xylonolactone and xylonate. No other products were formed from this pentose, nor was it incorporated into biomass. The presence of xylose in these cultures resulted in higher Yglucose and Ylactate values as compared to cultures without xylose indicating that biologically useful energy was conserved during the periplasmic oxidation of xylose. As the Y0 values for growth on glucose or on lactate alone were equal to the Y0 values for growth with xylose as co-substrate, it is concluded that for glucose- or lactate-limited growth energy conservation by PQQH2 oxidation is as efficient as by NADH2 oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.