Abstract
Recent studies have shown that wavelet transform can effectively be used for noise reduction in the context of partial discharge (PD) signal detection and classification. Several thresholding approaches for wavelet denoising have been reported in the literature. In this study, a novel wavelet threshold estimation method, named energy conservation-based thresholding (ECBT), is introduced. The proposed thresholding function is capable of conserving a significant portion of the original signal energy, while the threshold value is determined based on the relative difference between the original and noisy signal energies. The proposed method is first applied to PD signals contaminated with different levels of simulated noise. Results show that ECBT produces a denoised PD signal with higher signal-to-noise ratio (SNR) and less distortion than PDs produced by the existing wavelet methods. Then, ECBT is modified to address actual PD signals corrupted with real noise, where a robust SNR estimation method is derived to estimate the noise level embedded in the measured PD signals. The denoised PD signals indicate that the proposed method yields higher reduction in noise levels than other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.