Abstract

AbstractThe erasure of each bit of information by a computing device has an intrinsic energy cost. Although any Turing machine can be rewritten to be thermodynamically reversible without changing the recognized language, finite automata that are restricted to scan their input once in “real-time” fashion can only recognize the members of a proper subset of the class of regular languages in this reversible manner. We use a general quantum finite automaton model to study the thermodynamic cost per step associated with the recognition of different regular languages. We show that zero-error quantum finite automata have no energy cost advantage over their classical deterministic counterparts, and prove an upper bound for the cost that holds for all regular languages. We also demonstrate languages for which “error can be traded for energy”, i.e. whose zero-error recognition is associated with provably bigger energy cost per step when compared to their bounded-error recognition by real-time finite-memory quantum devices.KeywordsQuantum finite automataReversibility

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.