Abstract

Abstract Energy communities are paving the way for new cooperation opportunities related to energy consumption and energy production. Individuals unite in energy communities to reduce the costs related to energy consumption. Although previous work has mainly focused on energy exchange inside the community. This work aims to investigate the Pareto-optimal solutions to the transformation of a historical district into an energy community. For energy efficiency and production measure calculation, a system dynamics model is developed. Multiobjective differential evolution optimization method is employed for the evaluation of energy efficiency and production measures with a focus on net present value, self-sufficiency, annual emission reduction, and specific heat consumption. The optimization target functions can be increased at a cost in net present value. Replacement of household appliances and windows enables significant energy demand reductions while maintaining positive net present value. Electricity production from photovoltaic panels offers an additional pathway to increase selfsufficiency share while maintaining positive net present value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.