Abstract

The trade, control, and management of transactive energy have gained significant relevance and are receiving a lot of interest from academia and industry. New strategies for their progress and implementation are emerging. The prosumer concept involves the integration of household loads with solar PV and battery storage systems. It is suggested as a practical technique to include renewable energy sources and reduce strain on the distribution grid. This study indicates establishing a home-smart community connected to a power grid, explicitly emphasizing prosumers. The district employs cooperative game theory to enable the sharing, controlling, and coordinating of excess energy generated by distributed energy resources (DERs) with neighboring prosumers experiencing energy shortages. The energy community examined in this study comprises six identical prosumers, encompassing residential energy use, solar photovoltaic (PV) installations, and battery storage systems. Furthermore, the community consists of an energy community manager and an energy retailer, both tied to a distribution system. The intended market model assesses the economic advantages of incorporating renewable sources into a centralized transactive energy trading system This approach reduces transaction costs and power expenditures, offering cost savings to producers and consumers. The results show that the suggested intelligent method has successfully decreased consumer electricity costs in various circumstances. Indeed, the proposed approach seeks to oversee the exchange, organization, and control of the community’s household electricity consumption effectively. Furthermore, its objective is to diminish energy usage, enhance system effectiveness, and minimize operational strain and carbon emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.