Abstract

Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Detection of visible and near-infrared light at the single-photon level and discrimination between one- and two-photon absorption events place stringent requirements on TES design in terms of heat capacity, thermometry, and optical detection efficiency. Energy loss in the conversion of the photon energy in tungsten TESs to heat degrades the performance of these devices. By fabricating TESs on surface-micromachined Si3N4 membranes we improved the energy collection efficiency by a factor of two, to ∼80% energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.