Abstract

In order to investigate the effect of impeller tip clearance on the internal flow fields and the hydraulic losses in mixed-flow pump, the entropy production method with computational fluid dynamics (CFD) is employed to analyze the energy losses in a low specified number mixed-flow pump with guide vane. The results show that the size of tip clearance is closely related to the external characteristic performance of mixed-flow pump, and the effect of tip clearance on the flow fields of mixed-flow pump is obvious at design flow rate condition. When the tip clearance raises from 0.2 mm to 1.1 mm, the head drop loss coefficient increases 1.62 times in the impeller. As the tip clearance augments from 0.2 mm to the 1.1 mm, the total entropy production in impeller increases by 142%. Whereas, the total entropy production in guide vane descends by 21.8% slightly. It indicates that the increase of tip leakage flow (TLF) may increase the energy losses in impeller but the hydraulic losses in guide vane is suppressed to some extent as a result of an existence of TLF. Therefore, for the sake of improving the energy performance of mixed-flow pump, it is necessary to take the scale of blade tip clearance into account and consider optimizing the hydraulic design structure of guide vanes comprehensively to match the tip clearance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.