Abstract

An integrated energy system (with photovoltaic (PV) and fuel cell (FC) for building) is proposed and assessed in term of its energy self-sufficiency rate in seven cities (Nagoya, Toyota, Tajimi, Takayama, Ogaki, Hamamatsu, Shizuoka) in Tokai region in Japan in this paper. In this work, it is considered that the electricity requirement of the building for household users is provided by a building integrated photovoltaic (BIPV) system and the gap between the energy demand and BIPV supply is fulfilled by the FC. The FC is powered by the electrolytic H2 produced when PV power was in surplus. Based on the study of applying the proposed system in seven cities, which clarifies the effectiveness of the integrated BIPV, electrolytic H2 and FC power generation system, a universal system model has been developed in this paper. It has been observed that the monthly power production from BIPV as well as FC system are higher in spring and summer, while they are both lower in autumn and winter at all considered locations. The self-sufficiency rate of the FC system is higher with decreasing households’ number and it has been observed that 16 is the most appropriate number of households in a building, whose electricity demand could be fully covered by the integrated PV and FC system. Due to its climate condition, Hamamatsu is the best city in the region for installing the proposed system. The correlation between the households’ number and self-sufficiency rate of the FC system per solar PV installation area can be expressed by the regression curve in the form of y = ax-b well.

Highlights

  • According to Energy White Paper 2017 in Japan [1], it is expected that the global consumption of primary energy will increase by 1.2% - 1.8% per year from 2015 to 2030

  • It is considered that the electricity requirement of the building for household users is provided by a building integrated photovoltaic (BIPV) system and the gap between the energy demand and BIPV supply is fulfilled by the fuel cell (FC)

  • This study has proposed an integrated BIPV + FC system for Japanese buildings

Read more

Summary

Introduction

According to Energy White Paper 2017 in Japan [1], it is expected that the global consumption of primary energy will increase by 1.2% - 1.8% per year from 2015 to 2030. The renewable energy is expected to be the most increasing energy source. Power generated from renewable energy sources excluding hydro power in 2030 is expected to be 2.1 - 3.4 times as large as that in 2015. Though the renewable energy such as solar photovoltaic (PV) has been growing rapidly due to feed-in tariff system introduced in 2012 in Japan, the ratio of the installed capacity as well as the electricity generated of PV system in Japan to those in the world becomes lower. The growth of renewable energy in Japan is lower than world average. To promote the growth of renewable energy (in Japan), it is important to develop the low cost technology and to solve the problem that the output is unsteadiness due to their intermittent natures

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call