Abstract
Energy characteristic of a processor allocator and a network-on-chip Energy consumption in a Chip MultiProcessor (CMP) is one of the most important costs. It is related to design aspects such as thermal and power constrains. Besides efficient on-chip processing elements, a well-designed Processor Allocator (PA) and a Network-on-Chip (NoC) are also important factors in the energy budget of novel CMPs. In this paper, the authors propose an energy model for NoCs with 2D-mesh and 2D-torus topologies. All important NoC architectures are described and discussed. Energy estimation is presented for PAs. The estimation is based on synthesis results for PAs targeting FPGA. The PAs are driven by allocation algorithms that are studied as well. The proposed energy model is employed in a simulation environment, where exhaustive experiments are performed. Simulation results show that a PA with an IFF allocation algorithm for mesh systems and a torus-based NoC with express-virtual-channel flow control are very energy efficient. Combination of these two solutions is a clear choice for modern CMPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Mathematics and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.