Abstract
Abstract The increase in emission of greenhouse gases (GHGs) due to anthropogenic perturbation in both the agricultural and natural eco-systems are degrading the environmental quality. Conventional tillage (CT) and residue burning/removal exacerbates the land degradation and GHG emission, and the impacts are much more in the upland ecosystem than valley lands. Therefore, the aim of the present study was to evaluate the energy budget, and carbon footprint (CF) of no-till (NT) and mulches under the upland rice (Oryza sativa)–mustard (Brassica campestris var. toria) cropping system over CT based system to develop a clean production technology for improving the environmental quality and conservingnatural resources. The novelty of the study is that integrated effect of NT, diverse mulches and cropping system effect has been considered together as a conservation measure for sustainable and clean agricultural practice over those of CT based technologies. The experiment comprised of two tillage systems as the main-plot and four mulch types as the sub-plot treatments under a split-plot design. Two tillage systems included: 1. CT-RI: CT with 100% residue incorporation (RI), and 2. NT-RR: NT with 100% residue retention (RR). Four mulch types included: 1. rice straw mulch (SM), 2. green manure (GM) - Gliricidia sp. (a leguminous shrub) mulch, 3. brown manuring (BM) mulch [cowpea (Vigna unguiculata) grown as an intercrop and killed with a spray of 2, 4-D, 40 days after sowing (DAS)] and 4. no mulch (NM) control. The adoption of NT-RR significantly (p = 0.05) reduced the energy use (16,727 MJ/ha) and the cost of production (INR 54,271/ha, 1 US$ = 64.46 INR) compared with those under CT-RI (27,630 MJ/ha and INR 76,903/ha, respectively). Thus, NT-RR also increased the energy use efficiency (EUE), energy productivity (EP), net returns, and reduced CF of the system compared with those under CT-RI. Use of different mulches also increased the energy use efficiency, system productivity, and net returnscompared with those under NM. The total CO2-e emission (CF) was higher under CT-RI (2307 kg CO2-e/ha) as compared to those under NT-RR (2013 kg CO2-e/ha). The savings of fossil fuel from less number of tillage operations and also low emissions associated with energy consumed in manufacture, transport, repair and use of machines contributed to the lowest GWP under NT-RR. Thus, the study supports and recommended that the NT-RR with BM is an environmentally safe and clean production technology for enhancing the energy use efficiency, reducing the CF and cost of production of direct-seeded upland rice-mustard cropping system in India and similar agro-eco-regions elsewhere in the rice based cropping system in the world.
Full Text
Topics from this Paper
No Mulch
Energy Use Efficiency
Brown Manuring
Cropping System
Number Of Tillage Operations
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Journal of Cleaner Production
Oct 1, 2020
Agriculture, Ecosystems & Environment
Apr 1, 2019
The International Journal of Life Cycle Assessment
Nov 12, 2019
Agronomy Journal of Nepal
Jul 8, 2022
International Journal of Social Sciences and Education Research
Oct 1, 2020
Energy
Apr 1, 2022
Journal of Cleaner Production
Sep 1, 2021
Soil and Tillage Research
May 1, 2022
Indian Journal of Weed Science
Jan 1, 2020
TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
Mar 30, 2018
Agricultural Water Management
Dec 1, 2010
Soil and Tillage Research
Mar 1, 2007
International Journal of Agricultural and Applied Sciences
Dec 20, 2022
Soil and Tillage Research
Jul 1, 2008
Conservation
Jun 17, 2022
Journal of Cleaner Production
Journal of Cleaner Production
Dec 1, 2023
Journal of Cleaner Production
Dec 1, 2023
Journal of Cleaner Production
Dec 1, 2023
Journal of Cleaner Production
Dec 1, 2023
Journal of Cleaner Production
Dec 1, 2023
Journal of Cleaner Production
Dec 1, 2023
Journal of Cleaner Production
Dec 1, 2023
Journal of Cleaner Production
Dec 1, 2023
Journal of Cleaner Production
Dec 1, 2023
Journal of Cleaner Production
Dec 1, 2023