Abstract

A sustainable, affordable, and eco-friendly solution has been proposed to address water heating, electricity generation, space cooling, and photovoltaic (PV) cooling requirements in scorching climates. The photovoltaic thermal system (PV/T) and the direct expansion PV/T heat pump (PV/T DXHP) were numerically studied using MATLAB. A butterfly serpentine flow collector (BSFC) and phase change material (PCM) were assimilated in the PV system and MATLAB model was developed to evaluate the economic and enviroeconomic performance of the PV/T water system (PV/T-W), PV/T PCM water system (PV/T PCM-W), the PV/T DXHP system, and the PV/T PCM heat pump system (PV/T-PCM-DXHP). In this study, annual energy production, socioeconomic factors, enviro-economic indicators, and environmental characteristics are assessed and compared. Also, an economic, environmental, and enviro-economic analysis was conducted to assess the commercial viability of the suggested system. The PV/T PCM-DXHP demonstrated the highest electrical performance of 53.69%, which is comparatively higher than the other three configurations. The discounted levelized cost of energy (DLCOE) and payback period (DPP) of the PV/T PCM-DXHP were ₹2.87 per kW-h and 3-4years, respectively, resulting in a total savings of ₹67,7403 over its lifetime. Furthermore, installing this system mitigated 280.72 tonnes of CO2 emissions and saved the mitigation cost by ₹329,700 throughout its operational lifecycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.