Abstract

To enable long-distance, long-duration flights by small soaring-capable uninhabited aircraft, a graph-based method for planning energy-efficient trajectories over a set of waypoints is presented. It introduces the energy map, which is an upper bound on the minimum energy required to reach a goal from anywhere in the environment while accounting for arbitrary three-dimensional wind fields. The energy map provides the path to the goal as a sequence of waypoints, the optimal speeds to fly for each segment between waypoints, and the heading required to fly along a segment. Trajectories computed using the energy map are compared with trajectories planned using an A * -based approach. Results are presented for simple wind fields representative of orographic lift. Finally a high-fidelity numerical simulation of a realistic wind field (ridge lift and wave over complex terrain) is used as a test case. The energy-map approach is shown to perform very well without the need for the heuristics associated with A * .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.