Abstract
AbstractThe human brain receives stimuli in multiple ways; among them, audio constitutes an important source of relevant stimuli for the brain regarding communication, amusement, warning, etc. In this context, the aim of this manuscript is to advance in the classification of brain responses to music of diverse genres and to sounds of different nature: speech and music. For this purpose, two different experiments have been designed to acquire EEG signals from subjects listening to songs of different musical genres and sentences in various languages. With this, a novel scheme is proposed to characterize brain signals for their classification; this scheme is based on the construction of a feature matrix built on relations between energy measured at the different EEG channels and the usage of a bi-LSTM neural network. With the data obtained, evaluations regarding EEG-based classification between speech and music, different musical genres, and whether the subject likes the song listened to or not are carried out. The experiments unveil satisfactory performance to the proposed scheme. The results obtained for binary audio type classification attain 98.66% of success. In multi-class classification between 4 musical genres, the accuracy attained is 61.59%, and results for binary classification of musical taste rise to 96.96%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.