Abstract

We combine the newly constructed Galerkin difference basis with the energy-based discontinuous Galerkin method for wave equations in second-order form. The approximation properties of the resulting method are excellent and the allowable time steps are large compared to traditional discontinuous Galerkin methods. The one drawback of the combined approach is the cost of inversion of the local mass matrix. We demonstrate that for constant coefficient problems on Cartesian meshes this bottleneck can be removed by the use of a modified Galerkin difference basis. For variable coefficients or non-Cartesian meshes this technique is not possible and we instead use the preconditioned conjugate gradient method to iteratively invert the mass matrices. With a careful choice of preconditioner we can demonstrate optimal complexity, albeit with a larger constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.