Abstract

Evaluating the ability of coal seams to form fracture networks by hydraulic fracturing is important for the development of coalbed methane (CBM) reservoirs. In this paper, a new index for evaluating coal brittleness was established from the perspective of energy evolution during coal failure. Uniaxial and triaxial compression tests of coal monitored by an acoustic emission (AE) system were carried out and the applicability of the new index and the influence of the confining pressure and cleat orientation on the coal brittleness were analyzed. The pre-peak and post-peak dissipated energies were the essential factors in determining the coal brittleness. The new index can characterize the influence of the external stress and cleat orientation on coal brittleness, and can also comprehensively reflect the mechanical properties of the coal during the pre-peak and post-peak stages. The corresponding AE energy curves can be divided into Rapid Fracture Type, Stable Fracture Type and Plastic Fracture Type. For the Rapid Fracture Type, the accumulation rate of AE energy showed sudden changes when reaching the yield stress and peak strength, which represented high brittleness. The Plastic Fracture Type represented low brittleness, and the accumulated AE energy curves were smooth—first concave and then convex. The brittleness index of coal studied in this paper can provide a new method for selecting the optimal CBM reservoir and optimizing the fracturing scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call