Abstract

AbstractIn this paper an energy-based approach has been proposed based on the principals of nonlinear viscoelastic fracture mechanics to determine the thermal fatigue life of asphalt mixes for the short-term aging condition at a constant temperature. The approach, presented in this paper for only one aging condition at one temperature, is considered in another paper as the basis for the development of a comprehensive model (TFCMODEL) by which the thermal fatigue life of various asphalt mixes may be predicted analytically for varying aging conditions and temperatures. To this end, a modified uniaxial test setup was designed to account for the effects of the bonding/friction condition between asphalt and base layers, and nonuniform distribution of stresses/strains within the asphalt layer depth. To characterize the thermal fatigue behavior of asphalt mixes, uniaxial thermal fatigue tests were carried out on the beam specimens at two aggregate gradations, two binder contents, two air void contents, one aging...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.