Abstract

A novel source localization approach using acoustic energy measurements from the individual sensors in the sensor field is presented. This new approach is based on the acoustic energy decay model that acoustic energy decays inverse of distance square under the conditions that the sound propagates in the free and homogenous space and the targets are pre-detected to be in a certain region of the sensor field. This new approach is power efficient and needs low communication bandwidth and therefore, is suitable for the source localization in the distributed sensor network system. Maximum Likelihood (ML) estimation with Expectation Maximization (EM) solution and projection solution are proposed to solve this energy based source location (EBL) problem. Cramer-Rao Bound (CRB) is derived and used for the sensor deployment analysis. Experiments and simulations are conducted to evaluate ML algorithm with different solutions and to compare it with the Nonlinear Least Square (NLS) algorithm using energy ratio function that we proposed previously. Results show that energy based acoustic source localization algorithms are accurate and robust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.