Abstract

With the increasing interest in Cu2O-based devices for photovoltaic applications, the energy band alignment at the Cu2O/ZnO heterojunction has received more and more attention. In this work, a high-quality Cu2O/ZnO heterojunction is fabricated on a c-Al2O3 substrate by laser-molecular beam epitaxy, and the energy band alignment is determined by x-ray photoelectron spectroscopy. The valence band of ZnO is found to be 1.97 eV below that of Cu2O. A type-II band alignment exists at the Cu2O/ZnO heterojunction with a resulting conduction band offset of 0.77 eV, which is especially favorable for enhancing the efficiency of Cu2O/ZnO solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.