Abstract

Injection of 67 kt carbon dioxide was carried out between 2008 and 2013 at the test site for geological storage in Ketzin, Germany. The source carbon dioxide was delivered in liquid phase. The injection facility has had a three step process chain: (i) pressure increase by a liquid pump, (ii) temperature increase by ambient air vaporizers and (iii) temperature increase by an electrical vaporizer including phase change to gaseous conditions. The ambient vaporizers reduced electrical power demand but the weather dependence induced some kind of uncertainty, further their power could not be measured. In the cases when the carbon dioxide was evaporated within the ambient vaporizers, the heat demand increased such that the driving temperature was not enough for full vaporization. However, the gas to liquid ratio is unknown wherefore the heating power can not be calculated over the ambient vaporizer. This is addressed, as the electric energy consumption was most reduced during the two phase operation.For these intervals, two phase gas–liquid conditions prevailed in the pipeline. Unlike conjectured, flow conditions remained stable and did not vary significantly from single phase behavior. The current work – for the first time – presents a detailed analysis of energy input and losses of the carbon dioxide injection process based on field data and simulations. A modified process chain is proposed to switch the electric energy demand to an ambient heat source, reducing the electrical energy use per ton carbon dioxide by up to 90 %. The work provides insight for planning future injection devices that involve liquid carbon dioxide in the process chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.